Aufgabe EL70

Aufgabe:

Berechnen Sie, bis zu welchem pH-Wert man mit einer Kaliumpermanganat-Lösung ($c(Mn0_4^-) = 0.1 \text{ mol/L}$), die auch Mangan(II)-Ionen enthält ($c(Mn^{2+}) = 0.0001 \text{ mol/L}$), Chlorid-Ionen ($c(Cl^{-1}) = 1 \text{ mol/L}$) zu Chlor oxidieren kann.

Lösung:

allgemeine Lösungshinweise:

Treten in Redoxpaaren Hydronium-Ionen oder Hydroxid-Ionen auf, so sind diese Reaktionen pH-abhängig. Diese Ionen müssen beim Aufstellen der NERNST-Gleichung berücksichtigt werden, da es durch Veränderung des pH-Wertes teilweise zu erheblichen Potentialveränderungen kommt.

Akzeptorhalbzelle:

$$MnO_4^-$$
 (aq) + 8 H⁺ (aq) + 5 e⁻ ---> Mn^{2+} (aq) + 4 H₂O (I)

Donatorhalbzelle:

2 Cl⁻ (aq) ---> Cl₂ (g) + 2 e⁻

$$c$$
 (Cl⁻) = 1 mol · L⁻¹
 $U_H = U_H^0 = 1,36 \text{ V}$

Die Oxidation von Chlorid zu Chlor ist möglich, so lange die Potentialdifferenz positiv ist, so lange also das Akzeptorpotential größer ist als das Donatorpotential:

$$U = U_{\rm H}$$
 (Akzeptor) $-U_{\rm H}$ (Donator) > 0

 $U_{\rm H}$ (Akzeptor) $> U_{\rm H}$ (Donator)

1,51 V +
$$\frac{0,059 \text{ V}}{5} \cdot \lg \frac{c (\text{MnO}_4^-) \cdot c^8 (\text{H}^+)}{c (\text{Mn}^{2+})} > 1,36 \text{ V}$$

1,51 V + $\frac{0,059 \text{ V}}{5} \cdot \lg \frac{0,1 \text{ mol} \cdot \text{L}^{-1} \cdot c^8 (\text{H}^+)}{0,0001 \text{ mol} \cdot \text{L}^{-1}} > 1,36 \text{ V}$
0,0118 V · $[\lg 10^3 + 8 \cdot \lg c (\text{H}^+)] > -0,15 \text{ V}$
 $\lg c (\text{H}^+) > -1,96$
 $c (\text{H}^+) > 0,011 \text{ mol} \cdot \text{L}^{-1}$
pH < 1,96

Durch eine 0,1 molare Kaliumpermanganat-Lösung kann man Chlorid-Ionen der vorgegebenen Stoffmengenkonzentration bei pH < 1,96 (c (H $^+$) > 0,011 mol \cdot L $^{-1}$) zu Chlor oxidieren.